激光加工技术是当今时代较具技术先进性的加工制造技术,较传统加工方式有着显而易见的竞争优势。自上世纪七十年代激光加工技术蓬勃兴起,现已形成了激光切割、激光雕刻、激光焊接、激光打标等几十种激光加工技术。激光加工技术的高速高精度低耗等优势使得其被大范围推广应用,现已广泛应用于微电子电器、汽车、航空航天、机械制造、印刷包装等国民经济的重要领域,对于提高劳动生产率、提高产品质量、实现自动化生产、保护环境、减少材料资源消耗、降低生产成本等起着十分重要的作用。
激光全称为“受激辐射光放大(Light Amplification by Stimulated Emission of Radiation)”。原子中的电子在光或电的激发下吸收光电能量,自低能级跃迁到高能级,再从高能级落回到低能级时,以光子的形式释放出能量,且放出光的相位、频率、方向等光学特性高度一致,这样的光即为激光。激光与计算机、原子能、半导体共同被视为是二十世纪的四项重大发明,对人类社会的进步发展有十分重要的作用。
激光较为典型的应用就是激光加工,激光加工可分为冷加工和热加工两类。激光经过透镜等聚焦系统聚焦后作用于金属或非金属材料表面,利用激光的高能量对材料瞬时加热至**高温,使照射部分的材料熔化甚至气化,达到对材料的改性或去除,这种基于光热效应的加工被称为“热加工”。当用某类波长的高能量激光束照射到聚合物这类的材料时,可由光子引发或控制光化学反应,这种加工过程被称为光化学加工,也叫“冷加工”。光化学加工主要应用于光化学沉积、激光刻蚀和激光照排等。其中热加工的应用较为广泛。
激光加工是无接触的方式,不会产生工具与工件表面的摩擦阻力,也不会直接对工件进行冲击,工件几乎不会发生变形,且激光是对局部进行加工,对非激光照射的部分几乎没有影响,所以激光加工是高速、高效、高精度的加工方式。激光加工技术是光与机电技术的结合,激光光束的移动速度、功率密度和方向等都可以调节,易与数控系统配合来对复杂工件进行加工,可由此对其实现不同层面和范围的应用。
激光模切技术是根据在软件中设计好的工件图样,将激光束聚焦后直接对材料表面完成模切或压痕效果的一种切割方法。激光模切技术具有切割精度高、模切产品粗糙度低、模切加工时间短、生产效率高等特点。由于无须更换模切刀版,也可实现不同版式工件之间的快速转换,这样节省了传统模切刀版调整时间,尤其适用于轻薄、异形工件的加工。
典型的激光模切系统应该包括有激光器、扫描系统、控制系统、冷却系统、惰性气体保护室、废料清除系统以及反馈系统
激光在模切加工中扮演“模切刀”的角色,其对较终的加工效果的影响是模切机各组成部分中较大的,目前市场上用于激光加工的激光器主要有YAG激光器、CO2激光器和半导体激光器等。较常使用的是出波长能被非金属很好吸收且能够产生连续激光或非连续激光脉冲的CO2激光器。
激光雕刻机的主要组成为:激光器(提供激光光束,包括聚光腔、反射镜)、聚焦系统(使高功率密度的激光能量聚集在小面积上,达到较佳的雕刻效率)、导光系统(改变激光照射方向)、工作台(用于承载或移动被雕刻工件)、控制面板(调整和控制电源及激光器)、水冷系统(调控激光器内的温度)。由于主要是对非金属材料加工,所以激光雕刻与模切一样常选用CO2激光器。为实现高速点阵雕刻和适量雕刻,激光雕刻大多采用振镜式导光系统。
03
去除非图文部分,维持图文部分原样,各点处切除力度必相同。此雕刻方法较适用于表达图文轮廓等。
激光打标是应用范围较广的一项激光加工技术,其机理是通过激光对工件的局部照射,使表面材料瞬间融熔气化或者发生颜色变化,从而留下*性的文字、图案等的标记。激光打标对工件表面不会产生腐蚀,且加工后不会产生应力而影响原有精度,所以激光打标技术应用范围很广,对不同材料打标的原理、系统组成基本相同,只需通过实验找出对每种材料较适合的参数设置即可完成对不同材料的激光打标。
接下来讨论打标激光器的选择。CO2气体激光由于波长只能被非金属材料吸收所以只适用于非金属材料的打标,而YAG激光对金属、非金属材料均适用。掺稀土元素的光纤激光器与CO2、YAG 激光打标机相比输出功率更小,光斑直径更小,标记深度、精细度更高。紫外激光打标一种是新研发出的激光冷加工技术。紫外光能量密度高,光束质量好,聚焦光斑较小,热影响区域较小,可实现**精细标记,多用于打标玻璃等非金属材料。
激光打标具有速度快,标记精细且耐久性好,非接触式加工,加工方式灵活,易于与自动化加工生产线相结合等优点。可制作出复杂的不易被仿制或篡改的图文标记,所以也起到了很好的防伪作用。随着消费需求的扩大和激光打标技术的日趋先进,其在各行业中的应用会越来越广泛。